Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640925

RESUMO

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.

2.
Rice (N Y) ; 17(1): 27, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607544

RESUMO

Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.

3.
Plant Cell ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the two bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.

5.
Plant Biotechnol J ; 22(5): 1198-1205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410834

RESUMO

Plants have evolved a multi-layered immune system to fight off pathogens. However, immune activation is costly and is often associated with growth and development penalty. In crops, yield is the main breeding target and is usually affected by high disease resistance. Therefore, proper balance between growth and defence is critical for achieving efficient crop improvement. This review highlights recent advances in attempts designed to alleviate the trade-offs between growth and disease resistance in crops mediated by resistance (R) genes, susceptibility (S) genes and pleiotropic genes. We also provide an update on strategies for optimizing the growth-defence trade-offs to breed future crops with desirable disease resistance and high yield.


Assuntos
Resistência à Doença , Melhoramento Vegetal , Resistência à Doença/genética , Produtos Agrícolas/genética
6.
aBIOTECH ; 4(3): 272-276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37974906

RESUMO

The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.

7.
Plant Cell ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831412

RESUMO

Plant immunity is fine-tuned to balance growth and defense. However, little is yet known about molecular mechanisms underlying immune homeostasis in rice (Oryza sativa). In this study, we reveal that a rice calcium-dependent protein kinase (CDPK), OsCPK17, interacts with and stabilizes the receptor-like cytoplasmic kinase (RLCK) OsRLCK176, a close homolog of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE 1 (AtBIK1). Oxidative burst and pathogenesis-related gene expression triggered by pathogen-associated molecular patterns are significantly attenuated in the oscpk17 mutant. The oscpk17 mutant and OsCPK17-silenced lines are more susceptible to bacterial diseases than the wild-type plants, indicating that OsCPK17 positively regulates rice immunity. Furthermore, the plant U-box (PUB) protein OsPUB12 ubiquitinates and degrades OsRLCK176. OsCPK17 phosphorylates OsRLCK176 at Ser83, which prevents the ubiquitination of OsRLCK176 by OsPUB12 and thereby enhances the stability and immune function of OsRLCK176. The phenotypes of the ospub12 mutant in defense responses and disease resistance show that OsPUB12 negatively regulates rice immunity. Therefore, OsCPK17 and OsPUB12 reciprocally maintain OsRLCK176 homeostasis and function as positive and negative immune regulators, respectively. This study uncovers positive crosstalk between CDPK- and RLCK-mediated immune signaling in plants and reveals that OsCPK17, OsPUB12, and OsRLCK176 maintain rice immune homeostasis.

8.
Cell Rep ; 42(10): 113315, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862164

RESUMO

The receptor protein PEX5, an important component of peroxisomes, regulates growth, development, and immunity in yeast and mammals. PEX5 also influences growth and development in plants, but whether it participates in plant immunity has remained unclear. Here, we report that knockdown of OsPEX5 enhances resistance to the rice blast fungus Magnaporthe oryzae. We demonstrate that OsPEX5 interacts with the E3 ubiquitin ligase APIP6, a positive regulator of plant immunity. APIP6 ubiquitinates OsPEX5 in vitro and promotes its degradation in vivo via the 26S proteasome pathway. In addition, OsPEX5 interacts with the aldehyde dehydrogenase OsALDH2B1, which functions in growth-defense trade-offs in rice. OsPEX5 stabilizes OsALDH2B1 to enhance its repression of the defense-related gene OsAOS2. Our study thus uncovers a previously unrecognized hierarchical regulatory mechanism in which an E3 ubiquitin ligase targets a peroxisome receptor protein that negatively regulates immunity in rice by stabilizing an aldehyde dehydrogenase that suppresses defense gene expression.


Assuntos
Ascomicetos , Magnaporthe , Magnaporthe/metabolismo , Ascomicetos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Doenças das Plantas , Resistência à Doença , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Mol Plant ; 16(11): 1832-1846, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798878

RESUMO

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase ß subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.


Assuntos
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/metabolismo , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Trifosfato de Adenosina/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Magnaporthe/genética
10.
Nat Food ; 4(9): 774-787, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591962

RESUMO

Rice is a staple crop for over half of the global population. However, blast disease caused by Magnaporthe orzae can result in more than a 30% loss in rice yield in epidemic years. Although some major resistance genes bolstering blast resistance have been identified in rice, their stacking in elite cultivars usually leads to yield penalties. Here we report that OsUBC45, a ubiquitin-conjugating enzyme functioning in the endoplasmic reticulum-associated protein degradation system, promotes broad-spectrum disease resistance and yield in rice. OsUBC45 is induced upon infection by M. oryzae, and its overexpression enhances resistance to blast disease and bacterial leaf blight by elevating pathogen-associated molecular pattern-triggered immunity (PTI) while nullifying the gene-attenuated PTI. The OsUBC45 overexpression also increases grain yield by over 10%. Further, OsUBC45 enhances the degradation of glycogen synthase kinase 3 OsGSK3 and aquaporin OsPIP2;1, which negatively regulate the grain size and PTI, respectively. The OsUBC45 reported in our study has the potential for improving yield and disease resistance for sustainable rice production.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Oryza/genética , Enzimas de Conjugação de Ubiquitina/genética , Degradação Associada com o Retículo Endoplasmático , Doenças das Plantas/genética
11.
Trends Plant Sci ; 28(12): 1344-1346, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37648632

RESUMO

Lesion mimic mutations (LMMs) often confer broad-spectrum resistance (BSR) in plants, but with significant yield penalties. Sha et al. recently demonstrated that genome editing of the rice BSR gene RESISTANCE TO BLAST1 (RBL1), encoding a cytidine diphosphate diacylglycerol (CDP-DAG) synthase involved in phospholipid biosynthesis, confers multipathogen resistance without an obvious trade-off in yield.


Assuntos
Diacilglicerol Colinofosfotransferase , Oryza , Diacilglicerol Colinofosfotransferase/genética , Oryza/genética , Cistina Difosfato , Diglicerídeos , Mutação/genética
12.
Plant Biotechnol J ; 21(8): 1628-1641, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154202

RESUMO

Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.


Assuntos
Genes de Plantas , Oryza , Oryza/genética , Oryza/microbiologia , Estudo de Associação Genômica Ampla , Edição de Genes , Resistência à Doença/genética , Melhoramento Vegetal
13.
Nat Plants ; 9(2): 228-237, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646829

RESUMO

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Oryza/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Catalase/genética , Catalase/metabolismo , Alelos , Peróxido de Hidrogênio/metabolismo , Magnaporthe/metabolismo , Melhoramento Vegetal , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
14.
Trends Microbiol ; 31(3): 225-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535835

RESUMO

Plant metabolites are critical components of immune signaling pathways; however, how these small molecules contribute to plant immunity remains largely elusive. Emerging evidence demonstrates that the rice nucleotide-binding leucine-rich repeat receptor (NLR)-interacting proteins regulate the biosynthesis of ethylene, hydroxycinnamoylputrescines and diterpenoid phytoalexins to modulate plant immunity.


Assuntos
Oryza , Oryza/metabolismo , Proteínas/metabolismo , Imunidade Vegetal , Transdução de Sinais , Doenças das Plantas
15.
Cell Rep ; 40(7): 111235, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977497

RESUMO

Rice blast and bacterial blight, caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively, are devastating diseases affecting rice. Here, we report that a rice valine-glutamine (VQ) motif-containing protein, OsVQ25, balances broad-spectrum disease resistance and plant growth by interacting with a U-Box E3 ligase, OsPUB73, and a transcription factor, OsWRKY53. We show that OsPUB73 positively regulates rice resistance against M. oryzae and Xoo by interacting with and promoting OsVQ25 degradation via the 26S proteasome pathway. Knockout mutants of OsVQ25 exhibit enhanced resistance to both pathogens without a growth penalty. Furthermore, OsVQ25 interacts with and suppresses the transcriptional activity of OsWRKY53, a positive regulator of plant immunity. OsWRKY53 downstream defense-related genes and brassinosteroid signaling genes are upregulated in osvq25 mutants. Our findings reveal a ubiquitin E3 ligase-VQ protein-transcription factor module that fine-tunes plant immunity and growth at the transcriptional and posttranslational levels.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xanthomonas
16.
Genome Biol ; 23(1): 154, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821048

RESUMO

BACKGROUND: Ubiquitination is essential for many cellular processes in eukaryotes, including 26S proteasome-dependent protein degradation, cell cycle progression, transcriptional regulation, and signal transduction. Although numerous ubiquitinated proteins have been empirically identified, their cognate ubiquitin E3 ligases remain largely unknown. RESULTS: Here, we generate a complete ubiquitin E3 ligase-encoding open reading frames (UbE3-ORFeome) library containing 98.94% of the 1515 E3 ligase genes in the rice (Oryza sativa L.) genome. In the test screens with four known ubiquitinated proteins, we identify both known and new E3s. The interaction and degradation between several E3s and their substrates are confirmed in vitro and in vivo. In addition, we identify the F-box E3 ligase OsFBK16 as a hub-interacting protein of the phenylalanine ammonia lyase family OsPAL1-OsPAL7. We demonstrate that OsFBK16 promotes the degradation of OsPAL1, OsPAL5, and OsPAL6. Remarkably, we find that overexpression of OsPAL1 or OsPAL6 as well as loss-of-function of OsFBK16 in rice displayed enhanced blast resistance, indicating that OsFBK16 degrades OsPALs to negatively regulate rice immunity. CONCLUSIONS: The rice UbE3-ORFeome is the first complete E3 ligase library in plants and represents a powerful proteomic resource for rapid identification of the cognate E3 ligases of ubiquitinated proteins and establishment of functional E3-substrate interactome in plants.


Assuntos
Oryza , Ubiquitina-Proteína Ligases , Oryza/genética , Oryza/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Trends Plant Sci ; 27(10): 1063-1076, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35659746

RESUMO

Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.


Assuntos
Mitocôndrias , Imunidade Vegetal , Hormônios/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Nucleic Acids Res ; 50(9): 5064-5079, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524572

RESUMO

Many transcription factors (TFs) in animals bind to both DNA and mRNA, regulating transcription and mRNA turnover. However, whether plant TFs function at both the transcriptional and post-transcriptional levels remains unknown. The rice (Oryza sativa) bZIP TF AVRPIZ-T-INTERACTING PROTEIN 5 (APIP5) negatively regulates programmed cell death and blast resistance and is targeted by the effector AvrPiz-t of the blast fungus Magnaporthe oryzae. We demonstrate that the nuclear localization signal of APIP5 is essential for APIP5-mediated suppression of cell death and blast resistance. APIP5 directly targets two genes that positively regulate blast resistance: the cell wall-associated kinase gene OsWAK5 and the cytochrome P450 gene CYP72A1. APIP5 inhibits OsWAK5 expression and thus limits lignin accumulation; moreover, APIP5 inhibits CYP72A1 expression and thus limits reactive oxygen species production and defense compounds accumulation. Remarkably, APIP5 acts as an RNA-binding protein to regulate mRNA turnover of the cell death- and defense-related genes OsLSD1 and OsRac1. Therefore, APIP5 plays dual roles, acting as TF to regulate gene expression in the nucleus and as an RNA-binding protein to regulate mRNA turnover in the cytoplasm, a previously unidentified regulatory mechanism of plant TFs at the transcriptional and post-transcriptional levels.


Assuntos
Oryza , Proteínas de Plantas , Fatores de Transcrição , Morte Celular , Regulação da Expressão Gênica de Plantas , Magnaporthe , Oryza/citologia , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Genet Genomics ; 49(8): 776-786, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231636

RESUMO

Phenolamide (PA) metabolites play important roles in the interaction between plants and pathogens. The putrescine hydroxycinnamoyl transferase genes OsPHT3 and OsPHT4 positively regulate rice cell death and resistance to Magnaporthe oryzae. The bZIP transcription factor APIP5, a negative regulator of cell death and rice immunity, directly binds to the OsPHT4 promoter to regulate putrescine-derived PAs. Whether other hydroxycinnamoyl transferase (HT) genes also participate in APIP5-mediated immunity remains unclear. Surprisingly, we find that genes encoding agmatine hydroxycinnamoyl transferases OsAHT1 and OsAHT2, tryptamine hydroxycinnamoyl transferases OsTBT1 and OsTBT2, and tyramine hydroxycinnamoyl transferases OsTHT1 and OsTHT2, responsible for the biosynthesis of polyamine-derived PAs are all up-regulated in APIP5-RNAi transgenic plants compared with segregated wild-type rice. Furthermore, both OsAHT1/2 and OsTBT1/2 are induced during M. oryzae infection, showing expression patterns similar to those previously reported for OsTHT1/2 and OsPHT3/4. Transgenic plants overexpressing either OsAHT2-GFP or OsTBT1-GFP show enhanced resistance against M. oryzae and accumulated more PA metabolites and lignin compared with wild-type plants. Interestingly, as demonstrated for OsPHT4, APIP5 directly binds to the promoters of OsAHT1/2, OsTBT1/2, and OsTHT1/2, repressing their transcription. Together, these results indicate that the HT genes are common targets of APIP5 and that PAs play critical roles in rice immunity.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Putrescina , Transferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...